Long Division

Precalculus

2-04 Dividing Polynomials

Done like long division with ______ $\frac{y^4 + 2y^2 - y + 5}{y^2 - y + 1}$ $\frac{x^3 + 4x^2 - 3x + 10}{x + 2}$

Synthetic Division

- Shortened form of long division for dividing by a ____
- Only when dividing by _____

 $(-5x^5 - 21x^4 - 3x^3 + 4x^2 + 2x + 2)/(x + 4)$

$(y^5 + 32)(y + 2)^{-1}$

_	
	Factor Theorem
	If $f(x)$ is divided by $(x - k)$ and remainder is, then $(x - k)$ is a of $f(x)$
	Show that $(x + 3)$ is a factor of $x^3 - 19x - 30$. Then find the remaining factors.